Sheafiness of strongy rigid-noetherian huber pairs
نویسندگان
چکیده
Abstract We show that any strongly rigid-noetherian Huber ring A is sheafy. In particular, we positively answer Problem 31 in the Nonarchimedean Scottish Book.
منابع مشابه
Rigid left Noetherian rings
Let R be an associative ring. A map σ : R → R is called a ring endomorphism if σ(x+y) = σ(x)+σ(y) and σ(xy) = σ(x)σ(y) for all elements a,b ∈ R. A ring R is said to be rigid if it has only the trivial ring endomorphisms, that is, identity idR and zero 0R . Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid r...
متن کاملDo Noetherian Modules Have Noetherian Basis Functions?
In Bishop-style constructive algebra it is known that if a module over a commutative ring has a Noetherian basis function, then it is Noetherian. Using countable choice we prove the reverse implication for countable and strongly discrete modules. The Hilbert basis theorem for this specific class of Noetherian modules, and polynomials in a single variable, follows with Tennenbaum’s celebrated ve...
متن کاملNoetherian Induction
Let (A,1) be a partially ordered set. The relation a 1 b can be read as “a precedes b”. For elements a and b in A, we write a ≺ b if and only if a 1 b and a 6= b holds. For notational convenience, we also write a o b if and only if a 1 b holds, and a  b if and only if a ≺ b holds. We call (A,1) a well-founded set if and only if every non-empty subset M of A contains at least one minimal elemen...
متن کاملNoetherian Modules
In a finite-dimensional vector space, every subspace is finite-dimensional and the dimension of a subspace is at most the dimension of the whole space. Unfortunately, the naive analogue of this for modules and submodules is wrong: (1) A submodule of a finitely generated module need not be finitely generated. (2) Even if a submodule of a finitely generated module is finitely generated, the minim...
متن کاملNoetherian Lattices
The notation and terminology used here are introduced in the following papers: [18], [13], [17], [14], [19], [7], [1], [8], [6], [20], [3], [9], [2], [10], [15], [16], [5], [11], [4], and [12]. Let us observe that there exists a lattice which is finite. Let us mention that every lattice which is finite is also complete. Let L be a lattice and let D be a subset of the carrier of L. The functor D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2022
ISSN: ['1432-1807', '0025-5831']
DOI: https://doi.org/10.1007/s00208-022-02422-8